

Modbus Protocol
User Guide

Revision F November, 2013

Modbus User Guide i

Copyright and Trademark
Copyright � 2004-2013, Grid Connect, Inc. All rights reserved.

No part of this manual may be reproduced or transmitted in any form for any purpose other than the
purchaser's personal use, without the express written permission of Grid Connect, Inc. Grid
Connect, Inc. has made every effort to provide complete details about the product in this manual, but
makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability or fitness for a particular purpose. In no event shall Grid Connect, Inc.
be liable for any incidental, special, indirect, or consequential damages whatsoever included but not
limited to lost profits arising out of errors or omissions in this manual or the information contained
herein.

Grid Connect, Inc. products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other applications intended
to support or sustain life, or in any other application in which the failure of a Grid Connect, Inc.
product could create a situation where personal injury, death, or severe property or environmental
damage may occur. Grid Connect, Inc. reserves the right to discontinue or make changes to its
products at any time without notice.

Grid Connect and the Grid Connect logo, and combinations thereof are registered trademarks of Grid
Connect, Inc. All other product names, company names, logos or other designations mentioned
herein are trademarks of their respective owners.

Grid Connect

1630 W. Diehl Rd.
Naperville, IL 60563
USA
Phone: 630.245.1445

Technical Support

Phone: 630.245.1445
Fax: 630.245.1717
On-line: gridconnect.com

ii Modbus User Guide

Disclaimer and Revisions

The information in this guide may change without notice. The manufacturer assumes no
responsibility for any errors that may appear in this guide.

Date Rev. Author Comments
11/23/04 A GR Preliminary Release
06/02/05 B GR Notes for Device Installer and Product Code
01/03/06 C GR Notes for XPort-MB and NET232-MB
10/30/09 D GR Revisions to Device Installer, Notes for WiPort/WiBox
12/10/12 E JW Notes for all hardware added to Intoduction
11/06/13 F EDL Updates for V3.3.0.0 and web manager

Modbus User Guide iii

Warranty
Grid Connect warrants the media containing software and technical information to be free from
defects and warrants that the software will operate substantially for a period of 60 DAYS after the
date of shipment.

In no event will Grid Connect be responsible to the user in contract, in tort (including negligence),
strict liability or otherwise for any special, indirect, incidental or consequential damage or loss of
equipment, plant or power system, cost of capital, loss of profits or revenues, cost of replacement
power, additional expenses in the use of existing software, hardware, equipment or facilities, or
claims against the user by its employees or customers resulting from the use of the information,
recommendations, descriptions and safety notations supplied by Grid Connect. Grid Connect liability
is limited (at its election) to:

1) refund of buyer's purchase price for such affected products (without interest)

2) repair or replacement of such products, provided that the buyer follows the above procedures.

There are no understandings, agreements, representations or warranties, expressed or implied,
including warranties of merchantability or fitness for a particular purpose, other than those
specifically set out above or by any existing contract between the parties. The contents of this
document shall not become part of or modify any prior or existing agreement, commitment or
relationship.

Modbus User Guide 1-1

Table of Contents

1. Introduction ... 1-5�

2. Hardware .. 2-5�
2.1 NET232 ... 2-6�

2.1.1 Serial RS232 Interface ... 2-6�
2.1.2 OEM Module ... 2-6�

2.2 NET485 ... 2-7�
2.2.1 Overview of RS485/RS422 ... 2-7�
2.2.2 RS485/RS422 Network Connections .. 2-11�
2.2.3 RS485/RS422 Serial Interface ... 2-12�
2.2.4 Full Duplex/Half Duplex Jumper .. 2-14�

2.3 WI232 .. 2-15�
2.3.1 Serial RS232 Interface ... 2-15�
2.3.2 OEM Module ... 2-15�

2.4 Embedded Modules ... 2-17�
2.5 Power Supply ... 2-17�
2.6 Ethernet Interface .. 2-17�

3. Modbus ... 3-19�
3.1 Extended Modbus System Example .. 3-20�

3.1.1 Modbus/TCP Master Talking to Modbus/TCP Slave 3-20�
3.1.2 Modbus/TCP Master Talking to Modbus/RTU Serial Slave 3-21�
3.1.3 Modbus/RTU Serial Master Talking to Modbus/TCP Slave 3-21�
3.1.4 Modbus/RTU Serial Master Talking to Modbus/RTU Serial Slave .. 3-21�

3.2 Network Protocols ... 3-23�
3.3 Packing Algorithm ... 3-23�
3.4 IP Address.. 3-23�
3.5 Configuration Methods .. 3-23�
3.6 Device Server’s IP Address ... 3-24�
3.7 Device Installer .. 3-24�

3.7.1 RUN Device Installer .. 3-24�
3.7.2 Device Found ... 3-25�

4. Web Configuration .. 4-26�

5. Telnet Configuration ... 5-30�
5.1 Basic Commands (D/S/Q) ... 5-32�

5.1.1 Default Settings (D) ... 5-32�
5.1.2 Save (S) ... 5-32�
5.1.3 Quit Without Saving (Q) ... 5-32�

6. Configuring Modbus ... 6-32�
6.1 Network/IP Settings ... 6-32�

6.1.1 IP Address ... 6-33�
6.1.2 Set Gateway IP Address (Y/N) .. 6-33�

1-2 Modbus User Guide

6.1.3 Set Netmask (N for default) .. 6-33�
6.1.4 Telnet/Web Configuration Password .. 6-33�

6.2 Serial and Mode Settings .. 6-34�
6.2.1 Attached Device (1=Slave, 2=Master) .. 6-34�
6.2.2 Serial Protocol (1=Modbus/RTU, 2=Modbus/ASCII) 6-34�
6.2.3 Interface Type (1=RS232 2=RS422/RS485+4-wire 3=RS485+2-wire)6-35�
6.2.4 Enter Serial Parameters (9600,8,N,1) ... 6-35�

6.3 Modem Control Settings ... 6-36�
6.3.1 RTS/CTS Mode (1=Fixed 2=Variable) ... 6-36�
6.3.2 Delay after Output of RTS (0-1275 ms, 5ms increments) 6-36�
6.3.3 Wait for CTS to Go Active (N/Y) ... 6-36�
6.3.4 Delay after CTS Going Active (0-1275 ms, 5ms increments) 6-36�
6.3.5 Delay Dropping RTS after Transmitting (0-1275 ms, 5 ms increments)6-37�
6.3.6 DTR Mode (1=Fixed, 2=Active with connection) 6-37�

6.4 Modem/Configurable Pin Settings .. 6-37�
6.4.1 NET232/NET485/XPort-MB .. 6-37�
6.4.2 XPort-Direct+-MB .. 6-39�
6.4.3 MatchPort/WiPort/Wi232-MB .. 6-40�

6.5 Advanced Modbus Protocol Settings .. 6-42�
6.5.1 Modbus/TCP Port (standard default is 502) 6-43�
6.5.2 Slave Address (0 for auto, or 1..255 fixed otherwise) 6-43�
6.5.3 Allow Modbus Broadcasts (1=Yes 2=No) .. 6-43�
6.5.4 Use MB/TCP 00BH/00AH Exception Responses (1=No 2=Yes) 6-43�
6.5.5 Disable Modbus/TCP pipeline (1=No 2=Yes) 6-44�
6.5.6 Character Timeout (0 for auto, or 10-6950 msec) (50) 6-44�
6.5.7 Message Timeout (200-65000 msec) (5000) 6-44�
6.5.8 Serial TX delay after RX (0-1275 msec) (0) 6-44�
6.5.9 Swap 4x/0x to get 3x/1x (N) ... 6-44�

6.6 Preset Automated Scan Table ... 6-45�
6.6.1 A)dd, D)elete, E)xit Select Function ... 6-46�
6.6.2 Modbus Address ... 6-46�
6.6.3 Data Type .. 6-46�
6.6.4 Register Offset .. 6-46�
6.6.5 Register Count ... 6-46�
6.6.6 Frequency .. 6-46�

6.7 Unit ID to IP Address Lookup Table .. 6-47�
6.7.1 Close Idle TCP sockets after (3-60 sec, 0=leave open) 6-49�
6.7.2 Redundant Entry Retries after (15-60 sec. 0=disable feature) 6-49�
6.7.3 A)dd, D)elete, E)xit Select Function ... 6-49�
6.7.4 Modbus Address From/To .. 6-49�
6.7.5 Slave IP Address ... 6-49�

6.8 Security Settings.. 6-50�
6.8.1 Disable SNMP ... 6-50�
6.8.2 SNMP Community Name ... 6-50�
6.8.3 Disable Telnet Setup ... 6-50�
6.8.4 Disable Telnet Debug port .. 6-50�
6.8.5 Disable TFTP Firmware Update ... 6-50�
6.8.6 Disable Port 77FEh ... 6-50�
6.8.7 Disable Web Server... 6-50�
6.8.8 Disable Web Setup .. 6-50�
6.8.9 Disable ECHO ports .. 6-50�

Modbus User Guide 1-3

6.8.10 Enable Enhanced Password ... 6-51�

7. Monitor Mode and Firmware Upgrade ... 7-53�

8. Troubleshooting ... 8-55�
8.1 Debug Port 3000 .. 8-55�

8.1.1 Modbus Debug Codes ... 8-55�
8.1.2 Modbus Error Codes .. 8-57�

8.2 Troubleshooting Software ... 8-57�
8.3 How fast can I poll? ... 8-58�
8.4 I cannot get a slave response ... 8-59�
8.5 Only Slave ID #1 can be polled ... 8-59�
8.6 Every 2nd poll seems to fail .. 8-59�

9. Technical Support .. 9-63�

Modbus User Guide 2-5

1. Introduction
The Modbus firmware bridges Modbus/TCP on the Ethernet side to Modbus serial on the
RS232/RS422/RS485 side. The serial device can be a Modbus slave or master.

When attached to a Modbus serial slave(s) it converts Modbus/TCP requests from up to 10 clients on the
network into serial Modbus/RTU or /ASCII requests. Modbus serial responses are converted back to
Modbus/TCP and delivered to the original client.

When attached to a Modbus serial master it takes Modbus master serial requests (RTU or ASCII), converts
them to Modbus/TCP client requests and routes them to the destination IP address on the network based on
a lookup table. The Modbus/TCP response from the server is then converted back to Modbus serial.

This manual provides detailed operation and setup information for products with Modbus firmware. Many
device server products are designed with the XPort and other similar device server parts. For example, the
NET232 serial to Ethernet converter contains an XPort device server. When the XPort contains Modbus
firmware, it is known as an XPort-MB.

The default protocol found in an XPort device server is standard Serial Tunneling protocol, an encapsulation
protocol used to transport serial data over an IP network. The XPort device server with Serial Tunneling is
used to connect general serial devices to an Ethernet network by packing serial data inside UDP/IP and
TCP/IP packets. Changing the standard Serial Tunneling protocol to Modbus will change the setup
configuration menus and dialogs. Therefore, this manual provides Modbus protocol specific information for
the XPort-MB and other similar device servers.

2. Hardware
The NET232 and NET485 Adapters, designed by Grid Connect, use the XPort Device Server. The NET232
is a complete RS232 Serial to Ethernet interface. The Modbus version of this product is the NET232-MB.
The NET485 is an RS422/485 Serial to Ethernet interface. The Modbus version of this product is the
NET485-MB.

2-6 Modbus User Guide

2.1 NET232

2.1.1 Serial RS232 Interface

The table below lists the RS232 signals for the NET232. The RS232 interface is a 9-pin D-style connector.
Male connectors are wired as DTE and female connectors are wired as DCE.

Table 1 - RS232 Signals

NET232 Signal Direction DTE DB-9 Male
Pin #

DCE DB-9
Female Pin #

Data Out (TXD) Out 3 2
Data In (RXD) In 2 3

Ground 5 5
RTS In 8 7
CTS Out 7 8

No Connection 1,4,6,9 1,4,6,9

The NET232-DCE kit includes a 9-pin Male/Male Null Modem Adapter if you need a male connector. The
NET232-DTE kit includes a 9-pin Female/Female Null Modem Adapter.

The DB9 connector can be used to power the NET232 through one of the unused pins. Please contact the
factory for more information.

2.1.2 OEM Module

The NET232 circuit board can be supplied as an OEM module. The module has two headers that are used to
secure the module to a motherboard. One hole on the edge of the board can be used for mounting to a
standoff.
Note: OEM Modules must be ordered in quantities of 25 or more.

J4

GND

GND

VIN

CTS OUT

RTS IN

TXD OUT

RXD IN

GND 1
CTS OUT 3

RTS IN 5
TXD OUT 7

RXD IN 9

MOUNTING HEADER
HEADER, 10 POS 2MM VERT SMD
DIGI-KEY WM18652-ND
MATES WITH RECEPT 2MM 10 POS VERT
DIGI-KEY WM18676-ND

NO SIGNALS
ON THESE PINS

ONLY THIS HOLE
CAN BE USED FOR
MOUNTING

DO NOT USE THESE
HOLES FOR MOUNTING.
THEY HAVE POWER ON
THEM.

Modbus User Guide 2-7

2.2 NET485

2.2.1 Overview of RS485/RS422

RS232 is an EIA standard transmission system and has been around since 1962. RS232 provides single-
ended data communications between a transmitter and a receiver. In that era, it allowed for data
transmission from one transmitter to one receiver at relatively slow data rates (20k bits / second) and short
distances (up to 50 ft. at the maximum data rate).

While RS232 is well-known for connecting PC's to external devices, RS422 and RS485 are not as well
known. When communicating at high data rates, or over long distances in real world environments, single-
ended methods are often inadequate. RS422 and RS485 were designed to provide data communications over
longer distances, higher Baud rates and provide better immunity to external electro-magnetic noise.

RS422 and RS485 use differential data transmission (balanced differential signal). This offers superior
performance by canceling the effects of ground shifts and induced noise signals that can appear as common
mode voltages on a network. This also allows for data transmission at much higher data rates (up to 460K
bits / second) and longer distances (up to 4000 ft).

What is the difference between RS422 and RS485? Like RS232, RS422 is intended for point-to-point
communications. In a typical application, RS422 uses four wires (two separate Twisted Pairs of wires) to
transfer data in both directions simultaneously (Full Duplex) or independently (Half Duplex). EIA/TIA-422
specifies the use of one, unidirectional driver (transmitter) with a maximum of 10 receivers. RS422 is often
used in noisy industrial environments or to extend a RS232 line.

RS485 is used in applications where multiple devices want to share data communications on a single serial
network. RS485 can support up to 32 drivers and 32 receivers on a single two wire (one twisted pair) bus.
Most RS485 systems use a Master/Slave architecture, where each slave unit has its unique address and
responds only to packets addressed to it. However, peer to peer networks are also possible.

Specification RS-422 RS-485
Transmission Type Differential Differential
Maximum Data Rate 10 MB/s 10 MB/s
Maximum Cable Length 4000 ft. 4000 ft.
Driver Load Impedance 100 Ohm 54 Ohm
Receiver Input Resistance 4 KOhm min 12 KOhm min
Receiver Input Voltage Range -7V to +7V -7V to +12V
No of Drivers Per Line 1 32
No of Receivers Per Line 10 32

The RS485 Enable Signal

In a balanced differential system the data signals are produced by a line driver. (See the drawing below) The
line driver generates a voltage across a pair of signal wires that transmits the data signals. A balanced line
driver can have an optional input signal called an “Enable” signal. The purpose of the enable signal is to
connect the driver to its output terminals. If the enable signal is off, the driver is disconnected from the
transmission line. When a driver is disconnected from the network it is referred to as being in the “tri-state”
condition. Because there are multiple drivers (transmitters) on a RS485 network and only one transmitter
can be enabled at a time, the use of this enable control signal is required on all two-wire RS485 networks.

The following drawing shows a typical RS485 driver. Pin 3 is the transmit enable pin. Pin 2, the receive
enable pin, is tied to 3.3V which forces the receiver to always be enabled. When Pin 3 is high the transmitter
is enabled and data passes out the transmit pins. The design of the circuit allows the receiver section to read

2-8 Modbus User Guide

the data that is being transmitted. When Pin 3 is low the transmitter is disabled and the output goes to a “tri-
state” condition. In this condition, the receiver section is still listening to the network.

D

R

Vcc

3.3V

DE

DI

RO

RE
GND

8
3

4

1

2

5

7

6

3.3V

TXDA

TXDB

U2

DATA
LINES

TRANSMIT
ENABLE

The NET485 provides the Transmit enable signal for RS485 two-wire applications. When configured for
RS485 two-wire applications, the NET485 automatically asserts the transmit enable when it is ready to
transmit data from its serial port. Once the data has been transmitted, the NET485 automatically de-asserts
the enable signal to allow other nodes to transmit their data.

The Transmit enable pin is called a Configurable Pin, meaning it can be selected to do several functions.
One of those options is the transmit enable, which is labeled “RS485 TX Enable”. The Quick Start Guide
explains how to configure the NET485 for proper RS485 operation.

WARNING: The NET485 comes from the factory already configured for RS485 operation.

The NET485 uses Configurable Pin 1 (CP1) for the transmit enable. You must enable CP1 for
RS485_TXEN during the configuration process. (See the Quick Start Guide for details)

The NET485 uses CP1 in the Active High condition. You must set CP1 to Active High during the
configuration process. (See the Quick Start Guide for details)

C
P
U

Modbus User Guide 2-9

RS422 Operation

The NET485 can handle both RS485 and RS422 communications. This is done by connecting the processor
(CPU) to a pair of RS485 transceivers. The following schematic demonstrates how the circuit is wired for
RS422.

For RS422 mode, use the four signals produced by the two transceivers plus a signal ground as shown in
Figure 1 – RS422 Wiring

D

R

Vcc

3.3V

DE

DI

RO

RE
GND

8
3

4

1

2

5

7

6

6

D

R

Vcc

3.3V

DE

DI

RO

RE
GND

8
3

4

1

2

5

7

6

TXDA (Pin 7)

TXDB (Pin 6)

RXDA (Pin 5)

RXDB (Pin 4)

3.3V

CP0

TX
4

RX
5

Vcc

3.3V

2

GND
1

3.3V

RS422
Half-Duplex
Mode

SGND (Pin 3)

2

1

3

R13

10K

J2

CPU

TXDA
TXDB
RXDA
RXDB
SGND

Figure 1 – RS422 Wiring

The transmit section of the CPU is labeled TX on pin 4. The receive section of the CPU is labeled RX on
pin 5. Note that the CP1 pin on the CPU pin 6, which is configured to control the level of RS485_TXEN, is
connected to both transceivers. The transmit section is enabled with a High signal on pin 3, U2 and the
receive section is enabled with a Low signal on pin 2, U4.

There is a jumper option J2 that permits RS485/RS422 Half Duplex or RS422 Full Duplex. With the jumper
in the factory set position between pins 2 and 3, the unit is set for RS485/RS422 Half Duplex.

2-10 Modbus User Guide

RS485 Operation

For RS485 mode, the TXDA (+) signal is connected to the RXDA terminal, and the TXDB (-) signal is
connected to the RXDB terminal. The three signals are TXDA, RXDB, and signal ground.

D

R

Vcc

3.3V

DE

DI

RO

RE
GND

8
3

4

1

2

5

7

6

6

D

R

Vcc

3.3V

DE

DI

RO

RE
GND

8
3

4

1

2

5

7

6

3.3V

CP0

TX
4

RX
5

Vcc

3.3V

2

GND
1

3.3V

RS485
Mode

TXDA (Pin 7)

RS485
Mode

TXDB (Pin 6)

RXDA (Pin 5)

RXDB (Pin 4)

SGND (Pin 3)

2

1

3

R13

10K

J2

CPU

TXDA
TXDB

SGND

Figure 2 - RS485 Wiring

Modbus User Guide 2-11

2.2.2 RS485/RS422 Network Connections

RS422 Networks

A typical RS422 application uses a four-wire interface (two twisted pairs) and a shield. RS422 networks are
often used in a half-duplex mode, where a single master in a system sends a command to a slave device and
the slave responds with data. Typically one device (node) is addressed by the host computer and a response
is received from that device. Systems of this type (4-wire, half-duplex) are often constructed to avoid "data
collision" (bus contention) problems on a network. Figure 3 shows a typical RS422 four wire interface.

D

R

DE

DI

RO

D

R

DE

DI

RO

CP1

TX

RX

TXDA (Pin 7)

RXDB (Pin 4)

SGND (Pin 3)
CP1

DE
CP1

D

R

DI

RO

TX

TXDA

RXDB

SGND

D

R

DE

DI

RO
RX

CP1

TXDB (Pin 6) TXDB

RXDA (Pin 5) RXDA

4000 ft .

Rt

Rt

Rg Rg

Figure 3 - RS422 Four Wire Interface

Notice that 5 conductors are used (two twisted pairs and a ground wire). Also, when the cable lengths are
long and/or the data rates are high, the network must be terminated. To terminate the network, a resistor Rt
is added in parallel with the receiver’s A and B lines. Rg is an optional resistor between ground and the
shield. Rt termination resistors are available as option jumpers on the NET485.
Note: Do NOT install termination resistors on short wire networks. See the Application Notes on the product CD for more
information about networks and termination procedures.

2-12 Modbus User Guide

RS485 Networks

RS485 permits a balanced transmission line to be shared in a party line or multi-drop configuration. As
many as 32 driver / receiver pairs can share a multi-drop network on a single two wire bus. The length of
the network is limited to 4,000 ft. between the first node and the last node. RS485 can be used in two-wire
or four-wire multi-drop network applications.

Figure 4 shows a typical RS485 two-wire multi-drop network. The tri-state capabilities of 485 allow a single
pair of wires to share transmit and receive signals for half-duplex communications. In this configuration, it
is important to prevent more than one device from transmitting at the same time. This is controlled by
software and the communications protocol. Note that the transmission line is terminated on both ends of the
line but not at drop points in the middle of the line. Termination is only required with high data rates and / or
long wire runs.
Note: Do NOT install termination resistors on short wire networks. See the Application Notes on the product CD for more
information about networks and termination procedures.

D

R

DE

DI

RO

D

R

DE

DI

RO

CP1

TX

RX

TXDA (Pin 7)

RXDB (Pin 4)

SGND (Pin 3)

CP1

DE
CP1

D

R

DI

RO

TX

TXDA

RXDB

SGND

D

R

DE

DI

RO
RX

CP1

DE
CP1

D

R

DI

RO

TX

TXDA

RXDB

SGND

D

R

DE

DI

RO
RX

CP1

RXDA (Pin 5)

TXDB (Pin 6)

Figure 4 - RS485 Network

2.2.3 RS485/RS422 Serial Interface

The NET485 product allows you to connect an RS422/RS485 device to the Ethernet. Using RS485 two-wire
mode, you can connect the NET485’s serial interface to multiple devices in a multi-drop network.

Modbus User Guide 2-13

Terminator Jumpers

RS422/485 Terminals

Power Terminals

Ethernet Connection

Power LED

Figure 5 - Main Features

The table below lists the RS422/485 signals for the NET485. The RS422/485 and power interface is a 7-pin
removable Phoenix connector, with two of the pins used for power.

Table 2 - RS422/485 Signals

NET485 Signal 7-Pin Phoenix
TXDA (+) 7
TXDB (-) 6
RXDA (+) 5
RXDB (-) 4

SGND 3
GND 2

8-24VDC 1

8-24VDC
GND
SGND
RXDB
RXDA
TXDB
TXDA
TX TERM
RX TERM

 Termination Jumpers

Figure 6 - Phoenix Connector

The NET485 uses protective clamping structures on its inputs and outputs that clamp the voltage to a safe
level and dissipate the energy present in ESD (electrostatic) and EFT (electrical fast transients) discharges.
This protection structure achieves ESD protection up to 8 kV according to IEC1000-4-2, and EFT protection
up to 2 kV on all input/output (I/O) lines.

The NET485 has jumper terminals for adding termination resistors to the RX and TX lines. Add these
jumpers ONLY if you have long transmission lines and termination resistors are needed.
WARNING: Jumpers must be installed vertically.

Note: Do NOT use RX Term and TX Term jumpers on short transmission lines. Remove these jumpers to remove the
120 Ohm resistors from the transmit and receive lines.

Note: Only use one jumper when wired for RS485 two-wire mode (Figure 2 above).

2-14 Modbus User Guide

2.2.4 Full Duplex/Half Duplex Jumper

The NET485 is factory set for RS485 2-wire mode. You can change it to RS422 by changing the protocol
for the port setting. See Serial and Mode Settings on page 6-34. You can select Full or Half Duplex by
changing the internal jumper J2. The factory default setting is Half Duplex, pins 2 and 3 are connected.

J2

Figure 7 - J2 Setting for Half Duplex

To change the jumper J2 to Full Duplex, open the case and locate the jumper J2. Move the jumper to pins 1
and 2 as shown in the drawing.

J2

Figure 8 - J2 Setting for Full Duplex

Modbus User Guide 2-15

2.3 WI232

2.3.1 Serial RS232 Interface

The table below lists the RS232 signals for the Wi232. The RS232 interface is a 9-pin Male D-style
connector (DB9M), configured as a DTE device. DCE configured devices are also available on special
order.

Table 3 - RS232 Signals

Wi232 Signal Direction DTE DB-9 Male
Pin #

DCE DB-9
Female Pin #

Data Out (TXD) Out 3 2
Data In (RXD) In 2 3

Ground 5 5
RTS In 8 7
CTS Out 7 8
DTR Use J5 to

jumper 4-6
4 6

DSR Use J5 to
jumper 4-6

6 4

Note: J5 is used to jumper cable pins 4 to 6, which ties DTR to DSR. To locate J5, open the case by removing the two
screws. Use the drawing below to locate the jumper.

2.3.2 OEM Module

If you order the Wi232 as an OEM board, you can mount the board to your device and connect the signal
wires using the following drawings.

Mounting Holes

The following drawing shows the mounting holes for the Wi232 OEM board. If the power jack is removed,
one of the holes can be used for mounting the board.

125mil (3.175mm)

125mil (3.175mm)130mil (3.302mm)
Can be used if the power
jack is not installed.

+

2-16 Modbus User Guide

Header Connector

The header solder pads are located on the bottom layer of the board. The following drawing shows the
location of the pads. Note the part number and source for the connector header and receptacle. Use .250”
standoffs for proper spacing.

BOTTOM LAYER

HEADER FOR SIGNALS
AND POWER IF BOARD
IS MOUNTED WITH
STANDOFFS.

Connector Header
10-Pos, 2mm
Vert SMD
Mfg# 87759-1050
Digi-Key: WM18652-ND
(Part for Wi232)

Connector Receptacle
10-Pos, 2mm Vert PC Board
Mfg# 79107-7004
Digi-Key: WM18676-ND
(Circuit Board Part)Pin 1

Pin 2

The pads are wired according to the following table.

Table 4 - OEM Header Wiring

Pin # Description
1 Ground
2 Ground
3 CTS (Out)
4 Ground
5 RTS (In)
6 Ground
7 TXD (Out)
8 V + (In)
9 RXD (In)

10 V+ (In)

Board Dimensions

The dimensions for the mounting holes are shown in the following drawing.

0.275
2.925

0.150

1.150

1.925

3.400

2.075
0.450

2.000

0.125

A=125mil (3.175mm) Large Pads
B=130mil (3.302mm) Small Pad
also used for one terminal of the
power jack.

A

A

A

A

B

Modbus User Guide 2-17

2.4 Embedded Modules
Embedded modules include Xport-MB, Xport-Direct+-MB, and WiPort-MB

For full information on modules regarding hardware please refer to their corresponding integration guides.

2.5 Power Supply
The NET232 can use any DC power source from 5VDC to 24VDC, marked LPS or Class 2. A typical power
cube sent with the unit can supply 9VDC at 500 mA. However, there are other units that can be used as long
as they are in the range of 5-24VDC and supply the proper wattage. At 9VDC, the NET232 will draw
approximately 110mA (.99W) so a 2 Watt power source (9V at 200mA) should be adequate.

NOTE: The NET232 is designed to be used with any properly rated power adapter from 5VDC to 24VDC,
2W maximum, marked Class 2 or LPS.

NOTE: The NET232 power adapter is a 2.1mm positive center power jack. The jack is equivalent to a CUI
Inc. PJ-002A power jack.

Grid Connect can supply a special cable adapter to connect the NET232 to a USB jack for +5VDC power.

You can also order the NET232 with a Phoenix right angle power connector. The unit is supplied with a
mating Phoenix screw terminal block plug.

The NET485 can also use a DC power source from 5VDC to 24VDC, even though the label shows 8-
24VDC. The current draw is determined by network activity and serial port communications. In general, a
2.5W supply will handle the load.

Most modular power supplies use the same method of designating which lead is positive and which one is
negative. Generally, the lead with a white stripe, or white markings, is the positive lead. Verify the lead
markings with a meter before connecting a power source to the NET485.

Connect the positive lead to the terminal marked 8-24VDC. Connect the negative lead to the terminal
marked GND. The power LED will come on when power is supplied.

The unit will go through a self-test and will attempt to connect to a server. The LEDs on the Ethernet
connector will indicate the connection status.

2.6 Ethernet Interface
The NET485/NET232 device contains the following LEDs:

10BaseT/100BaseTX (Bi-color, Left LED)
Full/Half Duplex (Bi-color, Right LED)

2-18 Modbus User Guide

LEFT
LED

POWER
LED

Figure 9 - Ethernet Jack

Table 5 - NET485/NET232 LED Functions

Left LED Right LED Meaning
Solid Amber 10BASE-T

Solid Green 100BASE-Tx

 Blinking Amber Half Duplex Activity

 Blinking Green Full Duplex Activity

The WI232 device contains the following LEDs

Power LAN Activity Antenna
Jack

Activity Link

Modbus User Guide 3-19

3. Modbus
When it comes to data communications for industrial control systems, ModbusÔ is supported by the most
manufacturers. The Modbus/RTU protocol defines how a “master” device polls one or more “slave” devices
to read and write data in real time over RS-232, RS-422, or RS-485 serial data communication. Although
not the most powerful protocol available, its rare simplicity allows not only rapid implementation but also
enough flexibility to be applied in a large number of industrial situations. Modbus/TCP, an extension of
Modbus/RTU, defines how Modbus/RTU and Modbus/ASCII messages are encoded within and transported
over TCP/IP-based networks. Modbus/TCP is just as simple to implement and flexible to apply as the
original Modbus/RTU. You can find the specification for both online at www.modicon.com.

The XPort-MB Device Server allows users to integrate new and existing Modbus/RTU and Modbus/ASCII
serial devices to newer TCP/IP network-based devices. The next section describes a system that integrates
four Modbus/RTU devices with four Modbus/TCP devices.

Ô Modbus is a registered trademark of Schneider Automation.

3-20 Modbus User Guide

3.1 Extended Modbus System Example

A B C

Modbus/TCP over Ethernet, Token Ring, Routers, WAN, etc.

Device Server
Modbus

RS232

D

RS422

E F
Device Server

Modbus

HG

RS485

Modbus/RTU or
Modbus/ASCII

Device Server
Modbus

Figure 10 - Extended Modbus System Example

In Figure 0, we can see four specific styles of Modbus operations. Modbus/RTU devices are traditionally
split into two groups.

Modbus slave devices generally are the workhorse devices. Often industrially hardened, they tirelessly
perform their tasks 24 hours a day, 365 days a year. They perform tasks such as flow metering, temperature
control, batch loading, or even running entire automated assembly lines. The slave devices are not called
“slaves” because they work all the time; they are called slaves because as far as the data communications is
concerned, they function as passive servers. Modbus slave devices passively sit and wait for a remote
Modbus master device to ask them to report existing data values (Read) or accept new data values (Write).

Modbus master devices generally are higher-level computers, devices in which data and software are very
important. The most common examples of Modbus master devices are the “Human-Machine-Interface”
(HMI) computers, which allow human operators to monitor, adjust, and maintain the operations of the field
devices. Modbus master devices are clients that actively go out and “Read” from and/or “Write” to remote
Modbus slave devices to monitor or adjust slave behavior.

3.1.1 Modbus/TCP Master Talking to Modbus/TCP Slave

Devices A, B, E, and F are all new Modbus/TCP devices, which are improved over Modbus/RTU (see more
about Modbus/RTU limitations below). All 4 devices can function concurrently as both Modbus master and
Modbus slave. Both computers A and B can treat controller E as a slave, polling data in real-time. Yet
controller E can also act as a master and poll data from controller F, which can in turn also act as a master to
write alarm data directly up to computers A and B to alert the operators to the alarm condition. Traditional
Modbus/RTU requires slave devices even with life threatening alarm conditions to sit patiently and wait for
a remote master to poll the specific data that caused the alarm condition.

It is really revolutionary for such a simple and flexible protocol as Modbus to offer such functionality.
Therefore, Modbus/TCP offers exciting new design options for industrial users, which the Device Servers
extend to traditional Modbus/RTU serial devices.

Modbus User Guide 3-21

3.1.2 Modbus/TCP Master Talking to Modbus/RTU Seria l Slave

Devices D, G, and H are traditional Modbus/RTU slave devices. Device D uses a point-to-point electrical
interface like RS-232. This allows only a single Modbus/RTU master to talk to device D. However, the
Device Server makes device D appear on the Modbus/TCP network as a full Modbus/TCP slave device. All
Modbus/TCP enabled devices, A, B, E, and F, can actively share access to slave device D. A limitation in
traditional Modbus/RTU implementation expects devices to be dedicated as either master or slave devices,
so device D can only act as a Modbus slave.

Devices G and H are different from device D. They share a single RS-485 “multi-drop” line that strictly
limits them to act as slaves to a single Modbus/RTU master. However, a little of the new Modbus/TCP and
Device Server magic still applies¾ all Modbus/TCP enabled devices A, B, E, and F can actively share
access to both slave devices G and H. The Device Server manages and coordinates the shared access. In
fact, the Device Server allows up to ten concurrent Modbus masters to share access to the slaves.

3.1.3 Modbus/RTU Serial Master Talking to Modbus/TC P Slave

Device C is a traditional Modbus/RTU master device. Yet the Device Server makes device C appear to the
TCP/IP network as a Modbus/TCP master¾ plus all of the Modbus/TCP slaves on the TCP/IP network (A,
B, D, E, F, G, and H) appear as traditional Modbus/RTU slave devices. The only limitation is the traditional
Modbus/RTU assumption that device C is dedicated as a master only. Therefore Modbus/TCP master
devices A, B, E, and F cannot treat device C as a Modbus/TCP slave.

3.1.4 Modbus/RTU Serial Master Talking to Modbus/RT U Serial Slave

Finally, master device C can poll traditional Modbus/RTU slave devices D, G, and H as if they were directly
multi-dropped on an attached RS-485 line. The Device Server transparently bridges traditional
Modbus/RTU devices across any TCP/IP network. This means users can start implementing for
Modbus/TCP long before all of their required products exist with Modbus/TCP and network interfaces.

Modbus User Guide 3-23

3.2 Network Protocols
The XPort-MB Device Server uses TCP/IP protocols for network communication. The supported standards
are: ARP, UDP, TCP, ICMP, Telnet, TFTP, DHCP, and SNMP. For transparent connections, TCP/IP
(binary stream) or Telnet protocols are used. Firmware upgrades can be made with the TFTP protocol.

The industrial protocol defines addressing, routing and data block handling over the network. The TCP
(transmission control protocol) assures that no data is lost or duplicated, and that everything sent into the
connection on one side arrives at the target exactly as it was sent.

For typical datagram applications where devices interact with others without maintaining a point-to-point
connection, UDP datagram is used.

3.3 Packing Algorithm
Traditional Modbus/RTU requires a “character time-out” to signal the end of a Modbus/RTU packet. This
stretches out the overall response cycle. Fortunately, the XPort-MB Device Server uses an intelligent length-
predictive algorithm to detect the end of standard Modbus messages. This allows better performance plus
the XPort-MB Device Server falls back to using a user definable “character time-out” to manage non-
standard or user-defined Modbus functions.

3.4 IP Address
Every device connected to the TCP/IP network including the XPort-MB Device Server must have a unique
IP address. When multiple Modbus devices share a single IP, then Modbus/TCP includes an additional
address called the Unit ID.

When the XPort-MB Device Server is receiving Modbus/TCP messages from remote masters, the Unit ID is
converted to use in the Modbus/RTU message as the slave address.

When the XPort-MB Device Server is receiving Modbus/RTU messages from local serial masters, a user-
defined lookup table is used to match the 8-bit Modbus slave address to a remote IP address. The Modbus
slave address received is used as the Unit ID.

3.5 Configuration Methods
The XPort-MB Device Server can be configured using remote or local methods. Either use an ASCII
terminal or a terminal emulation program to locally access the serial port, or use a Telnet connection to port
9999 to configure the unit over the network using the Setup Menu. Telnet Configuration is also an option
inside DeviceInstaller.

You may also use a web browser to access the Device Server’s Web-Manager. You can access Web
Configuration using DeviceInstaller or simply type the IP address of the Device Server into your browser’s
address bar.

The XPort-MB Device Server configuration is stored in nonvolatile memory and is retained without power.
The configuration can be changed any time. The XPort-MB Device Server performs a reset after the
configuration has been changed and stored.

3-24 Modbus User Guide

3.6 Device Server’s IP Address
The XPort-MB Device Server is shipped with a default IP address of 0.0.0.0, which automatically enables
DHCP within the XPort-MB Device Server.

With a DHCP-enabled Device Server, if there is a DHCP server to respond to the Device Server’s request
when it’s booting up, the Device Server will then get an IP address, a gateway address, and a subnet mask
from the DHCP server. These addresses will not be shown in the Device Server’s Setup (configuration)
screens (you will still see 0.0.0.0), however if you enter the Monitor Mode and from 0> prompt, type NC
(upper case), the IP configuration of the Device Server will display. (See the Monitor Mode and Firmware
Upgrade chapter.)

3.7 Device Installer
The XPort-MB is shipped without software or hardware manuals. Device Installer software and
documentation can be downloaded from the Lantronix web site. See www.lantronix.com. The XPort-MB
user manual can be downloaded from the Grid Connect web page.

If you purchased a NET232-MB, Device Installer software and user manuals are provided on the supplied
CD. See the NET232 User Manual for Device Installer installation instructions. See the Device Installer
User Manual for operation details. Since the NET232 MB has different firmware, the operation of Device
Installer will be different.

Device Installer uses .NET Framework to adapt XPort embedded servers for Web services. Your system
must have .NET Framework installed for Device Installer to work properly. XPort-MB users can download
.NET Framework from the Lantronix web page. See www.lantronix.com. NET232-MB users can install the
software from the supplied CD.

Device Installer looks for devices on the network and identifies them according to a device code in the
firmware. Device Installer looks at the device code from all devices found and compares them to a list of
acceptable codes. The list is periodically updated and Device Installer will remind you to check for updates.

3.7.1 RUN Device Installer

Click the Start button on the Task Bar and select Programs\DeviceInstaller. From the list of options, select
DeviceInstaller.

The Device Installer main dialog box appears. The program automatically searches for devices.

Figure 11 - Device Installer Dialog Box

Modbus User Guide 3-25

To search for devices, click the Search icon or select Search F5 from the Device menu.

3.7.2 Device Found

Figure 11 shows two devices found on the network, with the IP addresses assigned by the DHCP server. The
device IP Address is normally set to 0.0.0.0 at the factory. The Hardware Address is an individual
permanent address assigned to a particular device on the network. The Hardware Address can be found on
the product label.
Note: The unit Type shown as XPort-IAP is the Modbus device.

Double-click the XPort-IAP in the Device Installer window to display the expanded window shown in
Figure 12. The Device Details tab is automatically selected and will display information about the selected
device.
Note: The ERROR displayed by DeviceInstaller’s Device Details is reported because the Modbus firmware
has different setup record data than the standard serial tunneling firmware.

4-26 Modbus User Guide

Figure 12 Device Details

4. Web Configuration
From the DeviceInstaller Utility, click the Web Configuration tab. The IP address and Port number will be

displayed. To view the Web-Manager in the current DeviceInstaller window, click the Navigate icon .
To open the Web-Manager in your default web browser (recommended method), click the External

Browser icon .

If a password window appears, leave the User name and Password fields empty and click OK or press
Enter. By default the Device Server configuration will not have password protection. If a password has
been installed, then you would need to enter it here.

Modbus User Guide 4-27

4-28 Modbus User Guide

You should then see the Web-Manager Home screen.

The main menu is in the left pane of the Web-Manager window.

Click on one of the configuration page links in the main menu.

Modbus User Guide 4-29

Click OK after completing changes on a configuration page.

Click Apply Settings when all page changes are Done and the updated configuration settings will be written
to the Device Server.

5-30 Modbus User Guide

5. Telnet Configuration
1. From the DeviceInstaller Utility, click the Telnet Configuration button. The IP address and Port number

will be displayed. Click the Connect button to initiate the connection.

2. You’ll see the following lines, which tell you the Device Server’s Ethernet MAC address (hardware

address).

3. Within 5 seconds, press Enter to display the Setup (configuration) Mode screen. Here you can change

the parameters that define how the XPort-MB Device Server does its job.
Note: When you set up a new unit, and especially if you just reflashed the unit with a new firmware type, we
recommend that you reset all of the parameters to the factory defaults.

4. To reset the parameters to the factory defaults, type D on the command line and press Enter. The default
parameters display.

5. Select an option on the menu (1-7) by typing the number of the option.
6. To enter a value for a parameter, type the value and press Enter, or to confirm a default value, press

Enter.
7. Review your entries.
8. You have the following options:

To save the configuration and exit, type S on the command line and press Enter. This saves the
parameters to EEPROM.

Caution: DO NOT POWER CYCLE the unit too fast after doing this. Allow the unit to reboot naturally one
time first.

Modbus User Guide 5-31

To quit without saving, type Q on the command line and press Enter. The unit reboots.
To restore the default values, type D on the command line and press Enter.

Figure 13 - Setup (Configuration) Mode Screen

6-32 Modbus User Guide

5.1 Basic Commands (D/S/Q)
The main Device Server configuration menu is shown above. The Device Server offers three basic options.

5.1.1 Default Settings (D)

Entering D resets all parameters to the factory default as shown above. Only the IP address is not changed.
Although not required, selecting this option immediately after reloading the firmware and saving it ensures
that the unit is reset.

5.1.2 Save (S)

Entering S saves the currently displayed parameter settings into non-volatile memory and exits
configuration mode. This option will trigger a reset.

5.1.3 Quit Without Saving (Q)

Entering Q throws away any parameter changes you have made and exits configuration mode. This option
will trigger a reset.

6. Configuring Modbus

6.1 Network/IP Settings
Select 1 in the Telnet Setup menu to configure the Device Server’s network parameters. In the Web-
Manager click Network in the main menu.

The following values can be set/changed. To understand and select the appropriate values, consult one of
the many TCP/IP books available today and your network administrator.

Modbus User Guide 6-33

6.1.1 IP Address

The IP address must be set to a unique value on your network. If you are not familiar with IP addressing on
your network, please consult your system administrator. Please refer to the User Guide for your Device
Server for more details about IP addresses.

If the Device Server is set to an address already in use, it will display an error code with the LEDs and it
will not operate properly. If you understand and plan to use DHCP, set the IP to 0.0.0.0 to activate DHCP.

6.1.2 Set Gateway IP Address (Y/N)

Most users could select N for this case. You only need to choose Y if your Device Server must
communicate to remote TCP/IP networks through a router or gateway. If you select Y, you must also enter
the IP address of the default gateway within your local network.

6.1.3 Set Netmask (N for default)

Most users could select N, which causes the Device Server to automatically use the standard netmask
appropriate for the IP address you’ve entered. Users who want a non-standard netmask need to enter the
new subnet mask in the traditional form, for example, 255.255.248.000. The selecting of correct IP ranges
and subnet masks IS a large enough topic to fill a whole book – we cannot cover it here.

6.1.4 Telnet/Web Configuration Password

A telnet/web configuration password can be set to disable unauthorized access to the setup menu via a
Telnet connection to port 9999 or to the configuration web manager. It is not necessary to enter a password
to use the setup menu through the serial port.

In the Web-Manager click Server in the left-side menu to set the password. The Server page also allows you
to configure other advanced network and Device Server options.

6-34 Modbus User Guide

6.2 Serial and Mode Settings
Select 2 in the Telnet Setup menu to change the basic serial parameters. In the Web-Manager click Serial
Settings in the main menu. The following values can be set/changed.

6.2.1 Attached Device (1=Slave, 2=Master)

As mentioned in the introduction, Modbus/RTU devices are defined as either slave or master devices. Type
1 if the attached device is a slave (such as a sensor, meter or PLC) or 2 if the attached device is a master
(such as a PLC or computer running graphical human-machine-interface (HMI) software).

6.2.2 Serial Protocol (1=Modbus/RTU, 2=Modbus/ASCII)

Serial Modbus comes in two forms. Modbus/RTU uses 8-bit data bytes to send binary information.
However, some devices cannot handle 8-bit data bytes, so Modbus/ASCII is used. Modbus/ASCII is a
slower protocol where each 8-bit data byte is converted to 2 ASCII characters. Since the Device Server
converts both to and from Modbus/TCP fully, you can mix any combination of RTU and ASCII devices on
a Modbus/TCP network. So a Modbus/RTU Master attached to one Device Server can remotely access a
Modbus/ASCII slave attached to another Device Server.

Modbus User Guide 6-35

6.2.3 Interface Type (1=RS232 2=RS422/RS485+4-wire 3=RS485+2-wire)

This allows the Device Server to deal with the software-related details of using RS-232, RS-422, and RS-
485.

6.2.4 Enter Serial Parameters (9600,8,N,1)

Enter the baud rate, data bits (7/8), parity (N/O/E), and stop bits (1/2) in the classic “DOS Mode Command”
style. Examples are: 9600,8,E,1 or 1200,7,O,2. This setting must match the setting on the attached Modbus
device.

You will be warned if you try to set an unsupported combination of settings.
Note: After reset, the device server will check the serial port at 9600, 8, N, 1 for 5 seconds.

Note: Do NOT use the Configure button for changing the Baud Rate.

6-36 Modbus User Guide

6.3 Modem Control Settings
When using RS232, the Device Server has a number of user-definable “Modem Control” parameters to
manage RTS/CTS handshaking for half-duplex radio modems.

6.3.1 RTS/CTS Mode (1=Fixed 2=Variable)

Answer 1 and the Device Server output is fixed to high. Answer 2 to enable modem handshaking. The
RTS/CTS output is active when the device server is transmitting on the serial port. This setting is very
different from the hardware or RTS/CTS flow-control used with printers. This mode cannot work with a
direct RS232 cable, as each end only asserts its RTS control signal to power up intermediate transmitters.

6.3.2 Delay after Output of RTS (0-1275 ms, 5ms inc rements)

Only asked if RTS/CTS mode is variable. After the Device Server asserts the RTS/CTS signal, it delays
from 0 to 1275 ms before continuing. Normally this is set to 0. Only set a value here if your device, modem,
or interface requires extra initialization time before receiving serial data.

6.3.3 Wait for CTS to Go Active (N/Y)

Only asked if RTS/CTS mode is variable. Answering N causes the Device Server to ignore the RTS/CTS
response from the modem. Answering Y causes the Device Server to wait for the RTS/CTS response from
the modem. Do not answer Y unless you know that the cable is wired properly to support this signal.

6.3.4 Delay after CTS Going Active (0-1275 ms, 5ms increments)

Only asked if RTS/CTS mode is variable and set to wait for CTS to go active. After the Device Server sees
the modem assert an RTS/CTS response input, it delays from 0 to 1275 msec before transmitting. If the
Device Server waits without seeing a valid response from the modem, it will return the Modbus exception
response 0x0B (hex) to the Modbus/TCP requesting master.

Modbus User Guide 6-37

6.3.5 Delay Dropping RTS after Transmitting (0-1275 ms, 5 ms increments)

Only asked if RTS/CTS mode is variable. After the Device Server completes transmission, it delays from 0
to 1275 msec before dropping the RTS/CTS output.

6.3.6 DTR Mode (1=Fixed, 2=Active with connection)

Answer 1 and the Device Server DTR output is fixed to active. Answer 2 and the DTR output is active only
when at least one Modbus/TCP client is connected.

6.4 Modem/Configurable Pin Settings
Embedded modules, such as the XPort-MB, have configurable pins that can be set to perform different
functions, including modem control functions and general purpose I/O (GPIO). The menu option for
Modem Control Settings has been replaced with Modem/Configurable Pin Settings on embedded modules.

Configurable pins assigned as GPIOs can be written and read via Modbus/TCP when in slave attached
mode. A Modbus slave address of 255 and starting offset of 0001 are used to direct Read Coil Status, Read
Input Status, Force Single Coil and Force Multiple Coils Modbus commands to the embedded module’s
GPIO. Other commands or unmatched addressing are directed to the serial port.

6.4.1 NET232/NET485/XPort-MB

The Modbus Master/Slave functionality on the XPort-MB is very similar to the Modbus implementation on
other device servers. The major difference is that the configurable pins on the XPort-MB (CP1-3) can be
configured from the setup menu or web manager.

6.4.1.1 CP1 Function

This configurable pin can be set to:
CP1 Function (1=GPIO, 2=Status LED Output, 3=RTS Ou tput, 4=RS485 Enable)

Note: Status LED Output is only valid for XPort-MB devices.

Note: CP1 should be set to RS485 Output Enable (active high) for NET485-MB products.

Selecting GPIO (General Purpose IO) for CP1 will prompt the user for Input or Output directions.
GPIO (1=Input, 2=Output) (1)

Selecting GPIO for any CP option will later prompt you for the active level.
Invert GPIO (active high) (Y)

6-38 Modbus User Guide

The Status LED Output will provide a status indicator. Normally, this signal is tied to an LED on your
device. The LED will blink 4 times, then be off for two seconds to indicate the setup mode is active through
the serial port.

Selecting RTS Output for CP1 will prompt the user for additional RTS and flow control options.
RTS Mode 1 = Fixed, 2 = Active with transmit.

Selecting Fixed will complete the CP1 setup and the menu drops to CP2.
Selecting Active with Transmit will display the following option:

Delay after output RTS (0-1275 msec, 5ms resolution) (0)
After the NET232/USB MB asserts the RTS/CTS signal, it delays from 0 to 1275 msec before
continuing. Normally this is set to 0. Only set a value here if your device, modem or cable is non-
standard.

Wait for CTS (CP3) to go active (N)
Selecting Y to Wait for CTS will display the following option:

Delay after CTS going active (0-1275 msec, 5ms reso lution) (0)
After the NET232/USB MB sees the modem assert an RTS/CTS response input, it delays from 0 to 1275
msec before transmitting. If the unit waits without seeing a valid response from the modem, it will return
the Modbus exception response 0x0B (hex) to the Modbus/TCP requesting master.

Delay dropping RTS after TX (0-1275 msec, 5ms resol ution)
After the unit completes transmission, it delays from 0 to 1275 msec before dropping the RTS/CTS
output.

Selecting Wait for CTS will cause CP3 to be auto-co nfigured for CTS Input. You
will not be able to configure CP3 and the following message will appear:

CP3 Function already configured for CTS Input

Selecting RS485 Enable for CP1.
Selecting RS485 Output Enable for CP1 will prompt you for additional control options.

Invert RS485 Output Enable(active low) (N)
The RS485 Output Enable function is used for controlling an external RS485 line driver when in RS485
2-wire mode and this output can be configured for active high (default) or active low.

6.4.1.2 CP2 Function

This configurable pin can be set to:
CP2 Function (1=GPIO, 2=DTR Output, 3=RS485 Output Enable).

Note: CP2 should be set to GPIO Input for NET232-MB products.

Selecting GPIO (General Purpose IO) for CP2 will prompt the user for Input or Output directions.
GPIO (1=Input, 2=Output) (1)

Selecting GPIO for any CP option will later prompt you for the active level.
Invert GPIO (active high) (Y)

Selecting DTR Output for CP2 will prompt you for additional options.
DTR Mode (1=Fixed, 2=Active with connection)

Selecting RS485 Output Enable for CP2 will prompt you for additional control options.

Invert RS485 Output Enable(active low) (N)
The RS485 Output Enable function is used for controlling an external RS485 line driver when in RS485
2-wire mode and this output can be configured for active high (default) or active low.

6.4.1.3 CP3 Function

This configurable pin can be set to:

Modbus User Guide 6-39

CP3 Function (1=Unused, 2=Diagnostic LED Output, 3= RS485 Output Enable)
CP3 can be forced to CTS Input by answering ‘Y’ to the Wait for CTS option under the CP1 Function
menu for RTS Output.

Note: Selecting Diagnostic LED Output is only a valid option for XPort-MB products.

The Diagnostic LED Output is a status indicator to indicate the unit is in setup mode. When used in
conjunction with the Status LED Output, the following conditions can be monitored.

Condition LED 3 LED 1
No errors OFF ON
Network controller error ON Blink 3x/4 sec OFF
Duplicate IP address present ON Blink 5x/4 sec OFF
No DHCP response Blink 2x/sec Blink 5x/4 sec OFF
Setup menu active Blink 2x/sec See Note.

Note: During a Telnet connection, CP1 LED (Status LED) is ON. For a serial port connection, CP1 LED
(Status LED) blinks for 2 seconds, then OFF for 2 seconds. (It appears as 4 blinks, then OFF for 2 seconds)

6.4.2 XPort-Direct+-MB
The Modbus Master/Slave functionality on the XPort-Direct+ is very similar to the Modbus implementation
on other platforms such as the NET232 or NET485. The major difference is that the configurable pins on the
XPort-Direct+ (CP1-CP3) can be configured from the setup menu and web manager. The configurable pin
options are as follows:

CP1 Function (hit space to toggle) GPIO (In)
CP1 Function (hit space to toggle) GPIO (Out)
CP1 Function (hit space to toggle) Diag LED
CP1 Function (hit space to toggle) Status LED-G
CP1 Function (hit space to toggle) Status LED-Y

The assignment for each configurable pin is set by cycling through the menu options by entering a space or
any key other than <enter>. GPIO assigns the pin as a general purpose input or output. The GPIOs can be
written and read via Modbus/TCP when in slave attached mode. Diag LED, Status LED-G and Status LED-
Y are the outputs for diagnostic LED (red), green status LED and the yellow status LED. After assigning the
applicable function by pressing <enter> you are then asked if the pin is inverted (active low).

CP1 Function (hit space to toggle) GPIO (In) In vert (active low) (Y) ?

A function should be assigned to each configurable pin. GPIO (Input) should be the default for all unused or
unassigned pins.

CP1 Function (hit space to toggle) GPIO (In) In vert (active low) (N) ?
CP2 Function (hit space to toggle) GPIO (In) In vert (active low) (N) ?
CP3 Function (hit space to toggle) GPIO (In) In vert (active low) (N) ?

After all the configurable pins have been assigned, the standard modem control settings can be entered if
applicable.

RTS/CTS Mode (1=Fixed 2=Variable) (1) ?

The setting for each configurable pin is displayed in the setup menu.

Modbus/TCP to RTU Bridge Setup
1) Network/IP Settings:
 IP Address 192.168.0.2
 Default Gateway --- not set ---

6-40 Modbus User Guide

 Netmask --- not set ---
2) Serial & Mode Settings:
 Protocol Modbus/RTU,Slave(s) attached
 Serial Interface 9600,8,N,1,RS232, CH1
3) Modem/Configurable Pin Settings:
 CP1.. GPIO (In) CP2.. GPIO (In) CP3.. GPIO (In)
 RTS Output Fixed High/Active
4) Advanced Modbus Protocol settings:
 Slave Addr/Unit Id Source .. Modbus/TCP header
 Modbus Serial Broadcasts ... Disabled (Id=0 au to-mapped to 1)
 MB/TCP Exception Codes Yes (return 00AH and 00BH)
 Char, Message Timeout 00050msec, 05000m sec

6.4.3 MatchPort/WiPort/Wi232-MB
The Modbus Master/Slave functionality on the MatchPort, WiPort and WiBox is very similar to the Modbus
implementation on other platforms such as the NET232 or NET485. The major difference is that the
configurable pins on the MatchPort/WiPort (CP0-CP10) and the WiFi settings on the
MatchPort/WiPort/WiBox can be configured from the setup menu and web manager.

The WiPort/WiBox is a 2 serial port device and you can choose which serial port the firmware uses for
sending and receiving Modbus/RTU or Modbus/ASCII serial data under the “Serial & Mode Settings”
menu option. Channel 1 on WiBox only supports RS232 while channel 2 supports RS232 and RS422/RS485
2/4-Wire modes.

Use serial connector (1=CH1 2=CH2) (1) ?

The configurable pin options are as follows:

CP0 Function (hit space to toggle) GPIO (In)
CP0 Function (hit space to toggle) GPIO (Out)
CP0 Function (hit space to toggle) DTR (Out)
CP0 Function (hit space to toggle) Diag LED
CP0 Function (hit space to toggle) Status LED-G
CP0 Function (hit space to toggle) Status LED-Y
CP0 Function (hit space to toggle) RS485 Select
CP0 Function (hit space to toggle) RS485 2-Wire
CP0 Function (hit space to toggle) RS485 4-Wire
CP0 Function (hit space to toggle) Defaults(In)

The assignment for each configurable pin is set by cycling through the menu options by entering a space or
any key other than <enter>. GPIO assigns the pin as a general purpose input or output. The GPIOs can be
written and read via Modbus/TCP when in slave attached mode. DTR is the modem control output (MCO)
signal for Data Terminal Ready. Diag LED, Status LED-G and Status LED-Y are the outputs for diagnostic
LED (red), green status LED and the yellow status LED. RS485 Select is an output made active when
configuring the serial channel for RS422/485 operation. RS485 2-Wire and 4-Wire are outputs made active
when configuring RS422/485 2-Wire or 4-Wire operation respectively. Defaults is an input read at startup
that tells the firmware to reset configuration to factory defaults. After assigning the applicable function by
pressing <enter> you are then asked if the pin is inverted (active low).

CP0 Function (hit space to toggle) GPIO (In) In vert (active low) (Y) ?

A function should be assigned to each configurable pin. GPIO (Input) should be the default for all unused or
unassigned pins.

CP0 Function (hit space to toggle) RS485 Select In vert (active low) (Y) ?
CP1 Function (hit space to toggle) RS485 2-Wire In vert (active low) (Y) ?

Modbus User Guide 6-41

CP2 Function (hit space to toggle) GPIO (In) In vert (active low) (N) ?
CP3 Function (hit space to toggle) GPIO (In) In vert (active low) (N) ?
CP4 Function (hit space to toggle) GPIO (In) In vert (active low) (N) ?
CP5 Function (hit space to toggle) Diag LED In vert (active low) (N) ?
CP6 Function (hit space to toggle) Status LED-G In vert (active low) (N) ?
CP7 Function (hit space to toggle) Status LED-Y In vert (active low) (N) ?
CP8 Function (hit space to toggle) GPIO (In) In vert (active low) (N) ?
CP9 Function (hit space to toggle) GPIO (In) In vert (active low) (N) ?
CP10 Function (hit space to toggle) GPIO (Out) I nvert (active low) (N) ?

After all the configurable pins have been assigned, the standard modem control settings can be entered if
applicable.

RTS/CTS Mode (1=Fixed 2=Variable) (1) ?

The setting for each configurable pin is displayed in the setup menu.

Modbus/TCP to RTU Bridge Setup
1) Network/IP Settings:
 IP Address 192.168.0.2
 Default Gateway --- not set ---
 Netmask --- not set ---
2) Serial & Mode Settings:
 Protocol Modbus/RTU,Slave(s) attached
 Serial Interface 9600,8,N,1,RS232, CH1
3) Modem/Configurable Pin Settings:
 CP0..!RS485 Select CP1..!RS485 2-Wire CP2.. GPIO (In)
 CP3.. GPIO (In) CP4.. GPIO (In) CP5.. Diag LED
 CP6.. Status LED-G CP7.. Status LED-Y CP8.. GPIO (In)
 CP9.. GPIO (In) CP10. GPIO (Out)
 RTS Output Fixed High/Active
4) Advanced Modbus Protocol settings:
 Slave Addr/Unit Id Source .. Modbus/TCP header
 Modbus Serial Broadcasts ... Disabled (Id=0 au to-mapped to 1)
 Local Slave Addr for GPIO .. 003 mapped to 0x/ 1x00100-00110
 MB/TCP Exception Codes Yes (return 00AH and 00BH)
 Char, Message Timeout 00050msec, 05000m sec
6) WLAN Settings:
 WLAN Enabled, FW Rev 0 , network:LTRX_IBSS
 Ad Hoc network creation Enabled, LTRX_IBS S, Country:US, Channel:11
 Security None
 Data rate Up to 11 Mbps
 Power management Disabled

The menu option for “WLAN Settings” has been added to configure the WiFi parameters of the
WiPort/WiBox.

6-42 Modbus User Guide

6.5 Advanced Modbus Protocol Settings
Changing these parameters takes a bit of thought and planning.

Modbus User Guide 6-43

6.5.1 Modbus/TCP Port (standard default is 502)

The standard TCP port for the Modbus/TCP protocol is port 502. The default port number can be modified
if needed for local routing or if required by the Modbus/TCP partner.

6.5.2 Slave Address (0 for auto, or 1..255 fixed ot herwise)

Modbus/TCP includes a Unit ID field, which is used to address multiple Modbus slaves at a single IP
address. Unfortunately, some first generation software drivers assumed a single slave at each IP and always
set the Unit ID field to 0. This causes the Device Server problems because it requires the Unit ID for the
Modbus/RTU “Slave Address”. To support these older applications, the Device Server allows you to force a
fixed address for Modbus/RTU and Modbus/ASCII, but note that this restricts you to a single serial slave
device per Device Server.

Setting this value to 0 causes the Device Server to use the Modbus/TCP Unit ID as received. Setting it to
any other address causes the Device Server to always use the set value as a fixed address.

6.5.3 Allow Modbus Broadcasts (1=Yes 2=No)

This actually relates to the previous issue. The default is 2/No, in which case Device Server always assumes
a Modbus/TCP “Unit ID” of 0 really means Modbus slave address 1. Answering No here is like setting a
fixed address of 1 (parameter above), except the fixed address is only used if the Modbus/TCP “Unit ID” is
0.
Note: In the current software version for Device Server, a true Modbus broadcast is only supported when a
serial slave device is attached. A Modbus broadcast from a serial master device is discarded regardless of
this parameter setting.

6.5.4 Use MB/TCP 00BH/00AH Exception Responses (1=N o 2=Yes)

Traditional serial Modbus uses silence to signal some errors. While this works well with direct serial lines,
it causes serious problems on a TCP/IP wide-area-network where delays are not so predictable. See the
Troubleshooting chapter for a full discussion.

Setting this to 1/No causes the Modbus bridge to behave like a traditional Modbus serial slave – it answers
timeouts, unconfigured slave addresses, and CRC errors with silence.

Setting this to 2/Yes causes the Modbus bridge to return 1 of 2 new exception codes defined in
Modbus/TCP.

Consider exception hex 0A (PATH UNAVAILABLE) a “hard” error where a retry is not likely to succeed.
It is returned:
If slave-attached – currently never. However, future firmware may allow the user to define the range of
valid slave addresses.
If master-attached – if a Modbus request has a slave address that is not configured in the Unit ID to IP
mapping table.
If master-attached – if the TCP socket failed to open. This is really a soft-hard error, as the reason the TCP
socket failed to open may be transient or a hard configuration error.

Exception hex 0B (TARGET DEVICE FAILED TO RESPOND) should be considered a “soft” error where
a retry may succeed. It is returned:

6-44 Modbus User Guide

If slave-attached – if the slave didn’t answer or the answer contained a CRC error
If master-attached – if a TCP socket is open, but no response was received in the defined message timeout.
If master-attached – if a TCP socket is open, but the remote Modbus/TCP slave/server returned exception
0x0B.
Note: When using half-duplex RS485 in Master-attached mode with other slaves on the local RS485 line, it
is necessary to set MB/TCP 00BH/00AH Exception Responses to 1=No.

6.5.5 Disable Modbus/TCP pipeline (1=No 2=Yes)

While the Modbus/TCP standard specification requires Modbus/TCP masters/clients to only issue 1 poll at a
time, the full-duplex flow-controlled nature of TCP/IP allows them to issue more than one at a time, and the
TCP socket will happily buffer them. The Modbus Bridge will fetch them one at a time and answer each in
turn. See the Troubleshooting chapter for a full discussion of the problem this can cause.

Setting this to 1/No causes the Modbus Bridge to allow this queuing or pipeline behavior. This is the safest
default setting – only change this to disable if you are having problems.

Setting this to 2/Yes causes the Modbus Bridge to always fetch the newest request from the TCP buffer – all
older requests are discarded. This allows a Modbus/TCP master/client to issue new requests without risking
building up a stale queue of waiting requests.

6.5.6 Character Timeout (0 for auto, or 10-6950 mse c) (50)

This sets the timeout between characters received. Official Modbus/RTU defines a 3.5 character time-out,
but complex devices have various interrupts that can cause 5 to 10 character “pauses” during transmission.
A safe value for general use with Modbus is 50 msec. A setting of 0 will force the Device Server to
automatically calculate a minimum timeout based on the baud rate.
Note: Setting this value lower than 50 msec may not improve performance and may even make
performance worse. The Device Server uses an intelligent length-predicting algorithm to detect end-of-
message in Modbus/RTU. Detecting the end of a Modbus/RTU message with character timeout is only used
with user-defined or non-standard Modbus functions.

Note: When using half-duplex RS485 in Master-attached mode with other slaves on the local RS485 line, it
is necessary to set Character Timeout to 0 for auto.

6.5.7 Message Timeout (200-65000 msec) (5000)

 This sets the timeout for a response from a connected slave both serially and by TCP/IP.

6.5.8 Serial TX delay after RX (0-1275 msec) (0)

This feature inserts a delay between the Modbus/TCP master requests. The first request is sent out of the
serial port of the Device Server to the Modbus slave. When the slave’s response enters the serial port of the
Device Server, it triggers this timer. After the specified delay is reached, the next master request is allowed
to pass through the serial port of the Device Server, and the timer is reset. This feature is particularly useful
when using RS485 2-wired serial protocol. The delay gives ample time for the RS485 slave devices to turn
their transmitters off and their receivers back on. Normally this should be set to 0 – change it only if you are
having problems. Raising this value can produce additional message delays.

6.5.9 Swap 4x/0x to get 3x/1x (N)

This setting will convert holding register (4x) data reads to input register (3x) data reads. It also converts
coil (0x) reads to contact data (1x) reads. This feature is useful for Modicon I/O scanners that only support
reads of holding registers and coils.

Modbus User Guide 6-45

6.6 Preset Automated Scan Table
Selecting the Serial Protocol – Attached Device to be Modbus Slave will show Telnet configuration option 5
as Preset Automated Scan Table.

The Preset Automated Scan Table contains optional settings that direct the Device Server to automatically
access Modbus registers on the slave(s). This is useful when multiple Modbus/TCP clients are polling the
same group of “most interesting” registers. The scan allows the registers to be pre-fetched one time and then
delivered without delay to multiple requesting clients. The auto scan operation also allows the TCP
connection status and the network settings to be written to the connected slave’s registers.

Below is an example of adding an entry using Telnet. Select 5 to edit/view settings.

6-46 Modbus User Guide

 0): 001: Holding Reg (4x)00020-00029/0020 0msec

A)dd, D)elete, E)xit - select function A
 Modbus addr (1) ? 1
 Data type (hit space to toggle) Input Reg (3x)
 Register Offset 55, Count 4, Frequency 250

 0): 001: Holding Reg (4x)00020-00029/0020 0msec
 1): 001: Input Reg (3x)00055-00058/0025 0msec

A)dd, D)elete, E)xit - select function

Figure 14 – Preset Automated Scan Table Example

6.6.1 A)dd, D)elete, E)xit Select Function

You can either add or delete entries in the scan table. Enter E when you are satisfied with the table to return
to the main menu.

6.6.2 Modbus Address

This is the Modbus slave address of the connected slave.

6.6.3 Data Type

Hitting the space bar shows you the available data types for scanning. These include:

· Holding Register (4x) – reads a group of holding registers from the slave

· Input Register (3x) – reads a group of input registers from the slave

· Input Status (1x) – reads a group of input status registers (bits) from the slave

· Coil Status (0x) – reads a group of coil status registers (bits) from the slave

· TCP Status (0x) – writes the TCP client connected status to a coil
(0 = no connections, 1 = client(s) connected)

· IP Config (4x) – writes the network IP settings to holding registers on the first pass and then begins
reading back to check for changes. If a change to the IP settings is detected then they are stored and
the device server will reset to begin using the new settings. The IP Config options are as follows:

1. IP address only (4 registers)

2. IP address + Subnet Mask (8 registers)

3. IP address + Subnet Mask + Gateway (12 registers)

6.6.4 Register Offset

The starting offset of the Modbus register(s) (Example: Input register offset 10 = address 3x00010).

6.6.5 Register Count

Count is the number of registers to be accessed (124 maximum).

6.6.6 Frequency

Frequency is the period in milliseconds between accesses to the registers (50 – 65000 ms).

Modbus User Guide 6-47

6.7 Unit ID to IP Address Lookup Table
Selecting the Attached Device to be a Modbus Master will change Telnet configuration option 5 for
updating the Unit ID to IP Address Table.

The new Telnet menu appears like this:

6-48 Modbus User Guide

Since serial Modbus uses 8-bit slave addresses and a TCP/IP network requires 32-bit IP addresses, the
Device Server uses this table to map an 8-bit address into an IP/Unit ID combination. The 8-bit address is
used to both select the desired IP and as the Unit ID sent. The table holds 8 entries, and any Modbus slave
address not found in the table returns an exception response to the master (if enabled).

Modbus User Guide 6-49

Below is an example of adding an entry. Select 5 to edit/view settings.

Close Idle TCP sockets after (3-60 sec, 0=leave ope n) (10)
Redundant entry retries after (15-60 sec. 0=disable feature) (0)
(Set 4th octet to 0 to use Slave Address as part of IP)

 1): 001-100: 192.168.000.000+SLV
 2): 101-199: 192.168.000.150

A)dd, D)elete, E)xit - select function A
 Modbus addr from (102)
 Modbus addr to (102) 255
 Slave IP address (192) 172.(168) 16.(000) 1 23.(000)

 1): 001-100: 192.168.000.000+SLV
 2): 101-199: 192.168.000.050
 3): 200-255: 172.016.123.000+SLV

A)dd, D)elete, E)xit - select function

Figure 15 - Unit ID to Address Lookup Table Example

6.7.1 Close Idle TCP sockets after (3-60 sec, 0=lea ve open)

Sockets are opened as required. Entering a 0 holds a single socket open to the last remote Modbus/TCP
slave accessed.

Otherwise enter values 3 to 60 to automatically close the last socket after 3 to 60 seconds of idle time.

6.7.2 Redundant Entry Retries after (15-60 sec. 0=d isable feature)

Enter the time in seconds for redundant entry retries or set to 0 to disable the feature.

6.7.3 A)dd, D)elete, E)xit Select Function

You can either add or delete entries in the IP address table. They are automatically sorted into increasing
order. Enter E when you are satisfied with the table to return to the main menu.

6.7.4 Modbus Address From/To

This is the minimum/maximum Modbus slave address (inclusive) to forward to this IP address.

6.7.5 Slave IP Address

This is the IP address of the remote Modbus/TCP slave. Note the two different ways these IP are
interpreted. In the configuration example above you’ll see the following results:

Polls to Slave #12 will go to IP 192.168.0.12 with Unit ID 12.
Polls to Slave #70 will go to IP 192.168.0.70 with Unit ID 70.
Polls to Slave #112 will go to IP 192.168.0.50 with Unit ID 112.
Polls to Slave #155 will go to IP 192.168.0.50 with Unit ID 155.
Polls to Slave #201 will go to IP 172.16.123.201 with Unit ID 201.
Polls to Slave #244 will go to IP 172.16.123.244 with Unit ID 244.

Setting the last/4th IP octet to zero is interpreted as a signal to use the Slave ID as part of the IP. This
allows a Modbus/RTU master to access up to 255 remote Modbus/TCP slaves. Setting the last/4th octet of
the IP to 1-254 causes all slave polls in this group to be sent to the same IP. 255 is not accepted as the
last/4th IP octet.

6-50 Modbus User Guide

6.8 Security Settings
Select 7 in the Telnet Setup menu to change the security settings. Only the password setting can be adjusted
from the Web-Manager. Most of the security options are for disabling ports and features that may be
deemed a security risk.

6.8.1 Disable SNMP

This setting allows you to disable the SNMP feature on the Device Server. SNMP is a protocol used by
Network Management Systems (NMS).

Press Enter to keep the current setting or else type ‘y’ for yes and ‘n’ for no.

6.8.2 SNMP Community Name

The SNMP community name is like a password that must be matched by a NMS in order to access SNMP
MIB data.

6.8.3 Disable Telnet Setup

This setting disables Telnet access to the setup menu (port 9999). Device Server configuration can no longer
be accessed via Telnet.
Note: If enabled, this setting can only be turned off using serial port access to the setup menu.

6.8.4 Disable Telnet Debug port

This setting disables Telnet access to debug output (port 3000).

6.8.5 Disable TFTP Firmware Update

This setting disables the ability to update Device Server firmware using TFTP (port 69).

6.8.6 Disable Port 77FEh

Port 77FEh is used for remote configuration of the Device Server. DeviceInstaller also accesses this port
when searching for devices on the network.
Note: If enabled, the Device Server can no longer be discovered on the network by DeviceInstaller.

6.8.7 Disable Web Server

This setting disables the web server (port 80).
Note: If enabled, the Web-Manager can no longer be used for configuration.

6.8.8 Disable Web Setup

This setting disables access to the Device Server configuration via the web interface.
Note: If enabled, the Web-Manager can no longer be used for configuration.

6.8.9 Disable ECHO ports

This setting controls whether port 7 echoes characters it receives. This function is normally disabled.

Modbus User Guide 6-51

6.8.10 Enable Enhanced Password

The enhanced password expands the default 4 character password to 16 characters. The password protects
access to Device Server configuration via Telnet and the web. If the enhanced password is enabled, then you
will be prompted if you want to change the password.

Modbus User Guide 7-53

7. Monitor Mode and Firmware Upgrade
The easiest way to upgrade your protocol firmware (or “reflash”) is to use the DeviceInstaller Utility.
Note: This procedure should be done with caution.

There are important differences between the industrial protocol firmware (Modbus) files and standard
firmware files. Although the NET232 (XPort) and NET232 MB (XPort MB) hardware may be the same,
you will not be able to download a standard firmware file to the Modbus version and vice versa. These
firmware files are rejected with the error “Sorry, that firmware not supported.” The industrial firmware also
has blocked the “SF” command within the Monitor.

Modbus User Guide 8-55

8. Troubleshooting
Fortunately, using the Modbus Bridge firmware is normally painless and easy to do.

Unfortunately in some situations it won’t be easy or painless at all! In those situations you’ll find it difficult
to troubleshoot without an in-depth knowledge of Modbus and the system dynamics of polling.

Some general guidelines for trouble-shooting:
· Start polling slowly and work your way up.
· If you’re using a custom cable, consider instead first starting with a simple, home-made adapter

that makes your Device Server’s RS-232 port look like a 9-pin DTE port such as on a computer.
Then you can use a known-good cable to connect your device. Starting with a custom cable is 99
percent guaranteed to be a frustration – first prove everything is set up correctly, then use your
custom cable as the final test.

· At a minimum you should have access to something to watch the serial line. Most host
applications do a rather POOR job of explaining errors to you. We cannot count how many times
we’ve had customers complain of “No Response,” only to find out the device actually did respond.
It was just the host application declaring “No response” instead of the true “response not
understood.”

8.1 Debug Port 3000
The Device Server dumps out Modbus traffic data on Telnet port 3000. You will need to use a Telnet tool to
open a connection to the Device Server on port 3000.

The first thing to check is that there are “Net_Req[nn]…” debug logs. This indicates the Modbus/TCP
master/client is connected and polling the Modbus slave. Next see if there are error conditions reported
following the Net_Req such as “No Response!”. A Net_Req should be followed by a Net_Rsp. Check the
contents of the Net_Req and Net_Rsp data dumps for correct Modbus messaging.

8.1.1 Modbus Debug Codes

" Net_Req[#nn] xx …" Dump of the received Modbus/TCP request with header (length nn). The

Modbus/TCP header is the first 6 bytes followed by the Modbus message. The first
byte of the Modbus message is the slave address and the second byte is the function
code.

" Net_Rsp[#nn] xx …" Dump of the Modbus/TCP response with header (length nn). The Modbus/TCP
header is the first 6 bytes followed by the Modbus message. The first byte of the
Modbus message is the slave address and the second byte is the function code
(OR’ed with 80hex if there was an error).

"Mas_Req[#nn] xx …" A dump of bytes for the master request (Master attached mode).

" no_slave" No matching slave in the Unit ID -> IP Address Table (Master attached mode).

" newsck" Closing TCP socket to reach new IP address (Master attached mode).

" new_opn:n.n.n.n" Open new TCP socket to IP address n.n.n.n (Master attached mode).

8-56 Modbus User Guide

" open timeout " TCP open timeout (Master attached mode).

" discard stale rsp seq_no:xx" Modbus/TCP response received with the wrong sequence number (xx).

" master impatient" A new master request available on the serial port before the Modbus/TCP response
was received or timeout (Master attached mode).

" Discard 0x0B" Modbus/TCP response had a gateway error status (0A/OB) and gateway errors were
disabled in configuration (Master attached mode).

"Slv_Rsp[#nn] xx …" A dump of the Modbus/TCP response (Master attached mode).

" Pipe-N" The current request is being discarded because more Modbus/TCP requests were
queued on the socket and the pipeline option was disabled.

" rsp_delay_msec nnn" Reports the response delay time in milliseconds (nnn).

" bad slv/cmd " The slave address or function code of the response did not match the command.

"brcst" The Modbus request was a broadcast. No response is expected.

 “ Pause nnn” The firmware has injected a pause of ‘nn’ milliseconds. There is a minimum time
that must be met of 3.5 character times between commands and responses. This
minimum can be increased using the “Serial TX delay after RX” configuration
option. Otherwise, it is based on the baud rate.

" CTS_TimeOut!" A timeout occurred while waiting for CTS to go active (optional modem control).

" sTx[#nn] xx xx …" A dump of nn bytes of serial transmit data (debug firmware only).

" Ser_In ccc…" A dump of received serial characters (Modbus/ASCII mode only).

" Ser_In rxx rxx…" A dump of received serial bytes (Modbus/RTU, debug firmware only).

" No Response!" Modbus message timeout with no bytes received on the serial port.

" sRx[#nn] xx xx …" A dump of received serial bytes (debug firmware only).

" CharTO" Character Time Out reached during serial receive. Normally the firmware tries to
predict the end of the Modbus message, but if the function is unknown, the CRC is
bad or more incoming bytes are available then the character timeout is used.

" Ovr" Overflow, too many bytes received for Modbus message (>255).

" LftO" Unexpected byte received, the returned slave address or function code does not
match the command (Modbus/RTU only).

"TCP Err err" Modbus/TCP error reported (see Error Codes).

"CH Err err” Modbus serial error reported (see Error Codes).

Modbus User Guide 8-57

" err? nnn" Error nnn encountered.

"(opn)" New TCP socket opened.

"(cls)" A TCP socket was closed.

8.1.2 Modbus Error Codes

01 Illegal Function
02 Illegal Data Address
03 Illegal Data Value
04 Illegal Response Length
05 ACKnowledge
06 Slave Device Busy
07 Negative ACKnowledge
08 Memory Parity Error (Prog)
10 (0Ah) Gateway Path Unavailable
11 (0Bh) Gateway Target Device Failed to Respond

65520 Bad CRC
65521 Timeout
65522 Bad Form – Invalid Modbus message
65524 Overflow – Modbus message too long (>255)
65525 Incomplete – Incomplete Modbus/TCP message received
65526 Out of Sequence – Wrong Modbus address or function received in response

8.2 Troubleshooting Software
Specializing in testing and diagnostic tools for Developers, WinTECH Software offers several products
designed for the integration and troubleshooting of communications systems. All applications available from
their site are fully functional time-limited demos, and may be freely downloaded and distributed for
evaluation purposes. Developed by a Windows Developer for professional use, each application comes
complete with an unconditional 30-day money-back guarantee. The web site is www.win-tech.com.

Modscan is a Windows application which operates as a modbus master. It allows you to access and change
data points in a connected slave device using either the RTU or ASCII Transmission mode. ModScan is
ideally suited for quick and easy compliance testing of the modbus protocol and its built-in display of serial
traffic allows effective troubleshooting of field connections.

ModSim32 is a very simple but powerful application for simulating data from modbus slave devices.
ModSim is an MDI application which allows you to define multiple blocks of data points which may then
be accessed from a connected modbus master. Each document opened within ModSim may be configured to
represent data from the same or different slave node thereby providing simulation for an entire group of
devices. Useful for complience testing of new master designs or as a quick simulation of a process.

Note: Grid Connect does not endorse WinTECH software. The information is provided to assist software
developers. No support for this software will be provided by Grid Connect.

8-58 Modbus User Guide

8.3 How fast can I poll?
First, remember that you still have the serial link in there and therefore cannot expect to poll any faster than
you could by a direct serial link. In fact, since you are adding a number of queuing systems between your
application and device, you may even lose a bit of performance. For example, some download tests showed
remote download by Modbus/TCP bridged to Modbus/RTU ran about 20 percent slower than direct
download by Modbus/RTU.

But above all remember that the serial speed (or baud rate) consumes the largest amount of time (see the
table below). Suppose you issue a Modbus poll for 125 registers. This requires a 255-byte response, which
at 19.2kbps requires over 133 msec just to physically shift across the wire, while at 300 baud it takes nearly
10 seconds!

 Table 6 - Baud Rate

Baud
Rate

Byte/Sec Bit Time
(msec)

Byte Time
(msec)

256 Byte
Time (msec)

(in sec)

300 30 3.333333 33.333333 8533.333333 8.53

600 60 1.666667 16.666667 4266.666667 4.27

1200 120 0.833333 8.333333 2133.333333 2.13

2400 240 0.416667 4.166667 1066.666667 1.07

4800 480 0.208333 2.083333 533.333333 0.53

9600 960 0.104167 1.041667 266.666667 0.27

19200 1920 0.052083 0.520833 133.333333 0.13

38400 3840 0.026042 0.260417 66.666667 0.07

57600 5760 0.017361 0.173611 44.444444 0.04

115200 11520 0.008681 0.086806 22.222222 0.02

The overall time it takes to poll is the combined sum of these delays:
1. Delay for Master /Client to recognize need for poll
2. Delay to issue and get the poll onto the Ethernet
3. Delay for the poll to cross Ethernet and arrive error-free at the Modbus Bridge device (may include

retries and contention)
4. Delay for Modbus Bridge to process and queue Modbus/RTU poll
5. Delay for the serial link to be free (remember other Masters/Clients may be actively polling)
6. Physical delay to shift poll bit-by-bit across the serial link
7. Delay in the device to recognize, process, and start reply
8. Physical delay to shift response bit-by-bit across the serial link
9. Delay for Modbus Bridge to process and queue Modbus/TCP Response
10. Delay for the response to cross Ethernet and arrive error-free at the Master/Client (may include retries

and contention)
11. Delay for Master /Client to recognize need for poll

Modbus User Guide 8-59

Delays a and k are defined by your OPC or DDE driver. For example, a driver that runs only once each 55
msec (using the old DOS timer slice) can have a variable delay here of between 0 to 110 msec.

Delays c and i are defined by the complexity and load of your TCP/IP network. For example, if you’re
going thru radio or satellite links, these delays routinely amount to 1000 msec (1 sec) or more per poll and
another 1000 msec for a response.

Delays f and h are defined by the baud rate. Assuming an 8 bytes poll and 255-byte response, at 9600 baud
this is at least 275 msec, while at 1200 baud this is at least 2200 msec (2.2 sec).

Delay g is defined by the device. Oddly enough, the simpler the device, the faster it tends to reply. Some
controllers only allocate fixed time slices to process a response from shared memory – for example once
each 100 msec.

Delays d, e, and i are defined by the load on the Modbus Bridge. If other Master/Clients are polling, the
queuing delay for e can be large (the sum of delays f, g, and h) for each earlier poll waiting.

8.4 I cannot get a slave response
Besides the obvious wrong baud rate, there are many possible causes of this:

· Is your cable set up correctly for RS-232?
· An external Signal Ground connection is often required between devices.
· The Modbus Bridge firmware only expects Modbus/TCP from the network. Some applications just

pack Modbus/RTU raw in TCP – this is not supported.

8.5 Only Slave ID #1 can be polled
Your application is setting the Modbus/TCP Unit ID field to 0. This causes the Modbus Bridge firmware to
automatically map this to 1.

8.6 Every 2 nd poll seems to fail
Your device probably cannot accept a new poll as fast as the Modbus Bridge firmware is sending it.
Remember, TCP/IP is a full-duplex channel, plus since you can have up to 8 active sockets it is very easy to
have a new request already waiting as your last response is being returned. The only solution to this is to
slow down your Modbus/TCP masters so they never poll before the last response has been seen. This
manually creates the time delay between polls your device expects.

· My Bridge runs fine - for about 10 minutes and then my applications start reporting slaves going
off-line.

· My Bridge runs fine – until a slave goes off-line; then I tend to lose all the slaves or they all poll
only intermittently.

· Sometimes my Bridge returns the wrong data from the wrong slave.
· After a while, the Bridge seems to take longer and longer to answer – after a few hours, it takes 10

minutes or more for systems changes to propagate up to the Master/Client.

All these relate to the same issue – a mismatch in queuing behavior and expectation by the Master/Client to
the new realities of Ethernet. No, it’s not the Modbus Bridge behaving poorly. Yes, resetting the Bridge
does “fix” the problem (flushes the bloated TCP queues full of stale requests).

8-60 Modbus User Guide

The core problem is that the Master/Client is using the old RS-485 serial assumption that no-answer means
poll was lost. However, in the Modbus Bridge case, it could also mean the Bridge has not had time to
answer (is being over-worked). Also remember that TCP is reliable – the Bridge receives all polls sent
without error. The result is that the Master/Client retries, which like throwing gasoline on a fire, makes it
harder for the Bridge to catch up.

Here is the scenario that is hurting you:

1. Master sends out MB/TCP Poll #A with a timeout of 1000 msec.

2. Bridge receives the poll, but the serial link is busy so it waits - possibly another MB/TCP master is being
serviced or time-outs waiting on off-line stations are creating a backlog of new requests.

3. After approximately 850 msec, the serial link is now free and the Bridge forwards the MB/RTU request.

4. The Bridge receives the response, and since the timeout on the Bridge and Master are not inherently
synchronized, the Bridge sends the MB/TCP response into the TCP socket.

5. In the best of times, it may take 5-10msec for this response to actually go down the Bridge's TCP stack,
across the wire, and up the master's TCP stack. If a WAN or satellite is involved, it could take 750 msec or
longer.

6. Meanwhile, before the Master receives the Response #A, it gives up and makes the Modbus/RTU
assumption that the request must have been lost. The Master sends out a new MB/TCP Poll #B.

7. A few msec later, there is a response that looks like a good Response #B, but really is Response #A. If the
Master does not use a sequence number (unfortunately many do not) and has forgotten about pending poll
#A, it wrongly assumes this is response #B (possibly with catastrophic results if Poll #B was the same size
but different register range). So here is the source of your “Bridge returns the wrong data for wrong
slave” problem.

8. The Master is idle and has no out-standing polls. Yet the Bridge has received Poll #B by reliable TCP/IP.
It sends this out to Modbus/RTU slave and gets an answer. The Bridge is doing its job!

9. The Bridge returns Response #B to the master (if the socket is still open) and there it sits in its TCP/IP
buffer. The Master is not expecting more responses, so it neither receives nor purges the "extra" response.

10. Master sends Poll #C and magically finds "a response" waiting as soon as it looks in the receive buffer -
yet this is stale Response #B received before poll #C was even issued. If the Master does not implement
Modbus/TCP sequence numbers, then it accepts the response #B as satisfying poll #C. Imagine if the Master
is putting out 300 polls per minute (5 polls per second), but the Bridge can only process on average 290 of
those per minute and some carry over. After 10 minutes, you may have up to 100 “stale” responses waiting
in your Master’s TCP buffer. This makes it appear as though there is now a 20 second “lag” in data reaching
the Master. So here is the source of your “data taking longer and longer to propagate to
Master/Client” problem.

However, if the Master does implement Modbus/TCP sequence numbers, then the stale responses are
rejected. If the Master is smart enough to resynchronize itself (response #B doesn’t kill poll #C, but Master
waits more), then this resynchronization will manifest itself as the slaves going off-line and back on-line
intermittently. If the Master is not smart enough to resynchronize, once this out-of-sync behavior occurs,
your slaves go permanently off-line.

As you can see, this Modbus/TCP master is out of sync and the only cure may be to either restart the Master
or power cycle our Modbus Bridge. Both actions close the socket and purge the backlogged messages. Most
unfortunately, it's the power cycle of our Bridge that is fastest. This always causes the light bulb to go on
"Ah, this Bridge device is at fault!"

Modbus User Guide 8-61

Our Network-to-Serial product brings out this shortcoming in Master/Client Modbus/TCP designs, but even
a pure MB/TCP to MB/TCP network would suffer from this problem if the poll cycle approached the
average response time. Any Modbus/TCP network going through WAN will discover this.

Ideally all Modbus/TCP Master applications must implement the sequence number and gracefully handle
receipt of stale responses with unexpected sequence numbers. Unfortunately, the Modbus/TCP specification
says that this sequence number is optional and can be used by a master to match responses to requests;
however it can usually be just left as zero. The Modbus/TCP slave just echoes this back in the response. So
most Modbus/TCP OPC servers today do not implement the sequence number.

Fortunately, a second generation of Modbus/TCP masters is starting to come that understands the issues of
dealing with a Modbus Bridge to serial. So what is your solution if your Modbus/TCP master is first
generation?

· Slow down your poll rate. You have to consider the worst-case response time – assume all polls
timeout. If you have 5 slaves that normally answer in less than 100 msec each, but you must use a
250 msec message timeout, then polling each of the 5 each 1.25 sec is the only promised safe rate.

· If you are only polling a single slave (or poll one slave at a time), then you can try the “Disable
Pipeline” option in the Modbus Bridge firmware. This will either help or make things hopelessly
worse. If your OPC server or host application relies on pipelining to send more than one
outstanding poll at once, then disabling the pipeline will essentially stop all data communication.
(In which case, you can just turn the pipeline back on!)

The ideal solution (the 2nd generation solution) is for your Modbus/TCP Master/Client to not only support
the Sequence Number, but also support the receipt of the 00AH and 00BH extended Modbus/TCP exception
response. Then the Master/Client never needs to do retries – for each poll, it will receive either a value
Modbus/TCP response or a Modbus/TCP exception that the slave is unreachable or timed out. This
prevents the Master/Client from sending more polls than the Modbus Bridge can process and building the
TCP buffer queue up in the first place.

Modbus User Guide 9-63

9. Technical Support
If you are experiencing a problem that is not described in this manual, please contact Grid Connect at (630)
245-1445.

Our phone lines are open from 9:00AM - 4:30 PM Central Time Monday through Friday excluding
holidays.

